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  Statistical downscaling:   
●  Based on statistical relationships between large- and local-scale variables 

●  Low costs and rapid simulations applicable to any spatial resolution 

●  Uncertainties (results, propagation, etc) 
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StaRMIP: 
 

Statistical Regionalization (downscaling) 
Models Intercomparison 
and Hydrological Impacts 

Project 
 

Funded by ANR (French National Research Agency), 2013-2017 
 

-  Evaluation & intercomparisons of SDMs 
-  Developments of BC & SDMs 

Goals (in a nutshell): 



•  Intercomparisons / Evaluations of SDMs 
Ø  The climate point-of-view (Vaittinada Ayar et al., 2016) 
Ø  The hydrological point-of-view (Grouillet et al., 2016) 
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Intercomparison of SDMs and RCMs in CORDEX 
 

From 
Vaittinada Ayar, P., Vrac, M., Bastin, S., Carreau, J., Déqué, M., Gallardo, C. (2016) 
Intercomparison of statistical and dynamical downscaling models under the EURO- 

and MED-CORDEX initiative framework: Present climate evaluations. 
Climate Dynamics, 46: 1301. https://doi.org/10.1007/s00382-015-2647-5 

Part 1 

StaRMIP goal 1: Intercomparisons & guidelines 
The climate point-of-view 
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Ø  Reference & predictand E-OBS (Haylock et al., 2008) precipitation at 
0.44° resolution 

Ø  Predictors: first PC of SLP, D2, T2, R850, U850, V850, Z850,         
(ERA-I reanalyses, 1.125°) 

Ø  Calibration over the period 1979-2008 (2 x 20 years) 
Ø  Evaluation over the period 1989-2008 = CORDEX RCM runs period 

Ø  6-month “summer” (15 Apr.-14 Oct.) 
Ø  6-month “winter” (15 Oct.-14 Apr.) 
Ø  Occurrence threshold = 1mm/day 

Cross-validation set-up 



StaRMIP goal 1: Intercomparisons & guidelines 
The climate point-of-view 

=> 11 models 
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Summary 

Ø No model really takes the advantage on the others 
Ø Ranking is indicator-dependent and therefore 

depends on end-users needs ! 
Ø  This work provides 
⇒ SDMs simulations within the EURO- & MED-

CORDEX initiative 
⇒  a methodology to select the most suited 

simulations/models for end-users needs. 
 (Philosophy similar to the COST Action VALUE) 



 
From 

Grouillet, B., Ruelland, D., Vaittinada Ayar, P. & Vrac, M. (2016). 
Sensitivity analysis of runoff modelling to statistical downscaling 

methods in the western Mediterranean. 
Hydrol. & Earth Syst. Sci., 20, 1031‒1047. 

Part 2 

StaRMIP goal 2: Intercomparisons & guidelines 
The hydrological point-of-view 



Evaluation on 4 Mediterranean non-influenced basins 



Low resolution climate data 

•  NCEP/NCAR daily reanalysis data with a 2.5° spatial resolution 

•  IPSL-CM5A-MR GCM, regridded at a 2.5° spatial resolution 

•  CNRM-CM5 GCM, regridded at a 2.5° spatial resolution 

(Kalnay et al., 1996)  

(Dufresne et al., 2013) 

(Voldoire et al., 2013) 



Statistical downscaling models (SDMs) 

Representing the main families of SDMs: 
•  analogs of atmospheric circulation patterns 

(Analog) 
•  the “Cumulative Distribution Function - 

transform” approach (CDFt) 
•  a stochastic weather generator (SWG) 



High resolution climate series 



Hydrological modeling 



Runoff simulations 



Sensitivity analysis of hydrological responses 



Comparison of runoff simulations to provide guidelines 



Guideline to select SDMs from a hydrological point of view 

Median of the criterion values from the four basins 
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Outcome 

CDFt 

ANALOG 

SWG 

Best	results	but	never	supplies	downscaled	
values	out	of	the	range	of	the	calibra6on	
reference	dataset	

Good	performance	and	could	be	
improved	with	addi6onal	covariates	as	
predictor	
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Outcome 

CDFt 

ANALOG 

SWG 

Best	results	but	never	supplies	downscaled	
values	out	of	the	range	of	the	calibra6on	
reference	dataset	

Good	performance	and	could	be	
improved	with	addi6onal	covariates	as	
predictor	

Unsuitable	as	is	because	of	the	biases	between	
NCEP/NCAR	(calibra?on)	and	GCMs	predictors.	
	

One	solu6on	:	correc6on	of	the	GCMs	predictors	



What is the influence of bias correcting predictors 
on statistical downscaling models ? 

 
 
 

From 
 

Vrac, M. and P. Vaittinada Ayar (2017) 
Influence of Bias Correcting Predictors on Statistical 

Downscaling Models. 
J. Appl. Meteor. Climatol., 56, 5–26, https://doi.org/10.1175/
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From 
 

Vrac, M. and P. Vaittinada Ayar (2017) 
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Downscaling Models. 
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Combining BC & SDMs 

Sorry... Another time... 
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Ø  Multivariate – temporal, inter-var. & spatial – properties are reconstructed !! 

Ø  Applicable to any of your favourite 1d-BC or DS method !! 
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Data & Calibration/Projection 

•  Calibration = 1980-1994 

•  Projection = 1995-2009   

One “summer” season 
(15 Apr. – 14 Oct.)  
One “winter” season 
(15 Oct. – 14 Apr.)  

The “winter” results are shown next 
(but equivalent results for summer) 

•  Reference data = SAFRAN dataset (S-E of France), 8km x 8km 

•  Model data to be corrected = ERA-Interim reanalyses, 0.75°x0.75° 

1d-BC vs. Cond.BC(2d) vs. EC-BC(3012d) vs. ERA-I vs. Shuffle(ERA-I) 
vs. 

SAFRAN(proj) 



EC-BC : spatial evaluation (illustration on T2) 
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EC-BC : Inter-variable (PR-T) evaluation 

SAFRAN ERA-I 

  Cond. BC            
(T2 given BC PR) 

Shuffle (ERA-I) 

EC-BC 

Cond. BC            
PR given BC T2 

CDF-t (separately) 

Good !? 



EC-BC : Temporal evaluation (illustration on PR) 

SAFRAN 

EC-BC 

ERA-I 

Cond. BC 

Shuffle(ERA-I) 

1d-BC 



EC-BC : Temporal evaluation (illustration on PR) 

SAFRAN 

EC-BC 

ERA-I 

1d-BC 

SAFRAN 

EC-BC 

ERA-I 

Cond. BC 

Shuffle(ERA-I) 

1d-BC 



EC-BC : Temporal evaluation (illustration on PR) 

SAFRAN 

EC-BC 

ERA-I 

Cond. BC            
(T2 given BC PR) 

Shuffle on ERA-I 

SAFRAN 

EC-BC 

ERA-I 

Cond. BC 

Shuffle(ERA-I) 

1d-BC 
1d-BC 



More evaluations in Vrac and Friederichs (2015, JClim): 
 
 

Vrac, M., and Friederichs, P. (2015). 
Multivariate – Intervariable, Spatial, and Temporal—Bias Correction. 

J. Climate, 28, 218–237. 
doi: http://dx.doi.org/10.1175/JCLI-D-14-00059.1  
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•  1d-BC methods (CDF-t/QM) not able to produce multi-dimensional 
properties 

•  Cond’l technique only good for inter-var. properties (in present config.) 

•  EC-BC good for both inter-var. & spatial (& temporal) correlations 

ü  Preliminary 1d-BC before shuffling is important                              
(“1d-BC + shuffling” => best results)  

•  Flexibility: EC-BC is applicable with any 1d-BC or 1d-SDM !!! 

•  Easiness of coding + flexibility + fast application + quality  

=  EC-BC is a good candidate for many (multivariate) BC applications 

•  Package R (ECBC) already available (upon request to me) 
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•  GCMs/RCMs instead of reanalyses 
•  Ensemble (i.e., multiple models) approaches 

ü  Multi-1d-BCs / Multi-MBCs/ Multi-RCMs 

•  Comparisons with multivariate/spatial SDMs 
•  Consequences in terms of “impacts” (e.g., hydro) 
 

•  So far, the spatial dep. structure does not change (=obs) 
⇒  Conservative approach: “safe” projections 
⇒  Should we make it evolve? (How much do you trust GCM?) 

•  More flexibility (e.g., only inter-var & spatial BC, no temporal BC) 
•  From deterministic to stochastic EC-BC 

⇒  Variants (R2B2) of EC-BC (Vrac, in prep.) 

⇒  Different approach(es): “Optimal” BC (Robin et al., in prep.) 
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Thank you 

Sophie Bastin (LATMOS) 

Julie Carreau (HSM) 

Denis Ruelland (HSM) 

Pradeebane Vaittinada Ayar (LSCE) 

Benjamin Grouillet (HSM) 

& many thanks to the StaRMIP team 




