International Mistrals Workshop – Montpellier, 16-18 Oct. 2017 Climate change impacts in the Mediterranean region

Uncertainty propagation in the assessment of climate change impact on runoff

Challenging Cassandra prophecies in the western Mediterranean

Denis Ruelland¹, Paul Hublart² & Yves Tramblay³

¹CNRS, ²UM2, ³IRD – HydroSciences Laboratory - Montpellier, France denis.ruelland@um2.fr

Uncertainties associated to hydrological projections

Evaluation on 4 Mediterranean non-influenced basins

Hydro-climatic context over 1986–2005

Modified version of the GR4j hydrological model

Model calibration & validation based on observed runoff

Objective functions and Pareto-optimality principle

- NSE: Nash-Sutcliffe Efficiency metric
- ➤ NSE_{Log}: modified, log version of NSE
- \succ VE_c: cumulated volume error
- \succ VE_M: mean annual volume error

Best Compromise Solution (BCS) among the Pareto-optimal simulations

$$\gamma = (1 - \text{NSE}) + (1 - \text{NSE}_{\text{Log}}) + |\text{VE}_{\text{C}}| + \text{VE}_{\text{M}}$$

Multi-objective optimization

- Calibration of the Pareto-optima solutions based on the Non-dominated Sorted Genetic Algorithm (NSGA II, Deb, 2002)
- Providing bounds associated to the structural uncertainty of the hydrological model

Calibration & validation periods

- Defining two 10-year sub-periods (here after called dry years and wet years) according to median annual precipitation over the period
- Testing if the model calibrated on a given period is able to simulate streamflow with a similar efficiency on another period when it differs dramatically

Simulations from 5 Med-CORDEX RCMs (50 x 50 km)

Regional Climate Model	Associated GCM	Acronym	Country
CMCC (Centro euroMedit. sui Cambiamenti Climatici)	CMCC	CMCC/CMCC	Italy
CNRM (Centre National des Recherches Météorologiques)	ARPEGE (Action de Recherche Petite Echelle Grande Echelle)	CNRM/ARPEGE	France
GUF (Goethe Universität Frankfort)	MPI (Max Planck Institute)	GUF/MPI	Germany
ICTP (International Centre of Theoretical Physics)	MPI (Max Planck Institute)	ICTP/MPI	Italy
IPSL (Institut Pierre Simon Laplace)	IPSL	IPSL/IPSL	France

http://www.medcordex.eu

Evaluation of the RCM simulations over 1986–2005

Climate scenarios with a monthly perturbation method

Hydrological model efficiency and uncertainties

Q_{BCS}

Q_{obs}

Uncertainty envelope

Future climatic trends and uncertainties

Future hydrological trends and uncertainties

Conclusions: back to Cassandra myth

How were challenged the hydroclimatic prophecies of Cassandra?

- Hydrological uncertainty investigated using a multi-objective approach and a DSST
- Climate-related uncertainties considered via an ensemble of Med-CORDEX RCM simulations

Is Cassandra really able to hear the (hydro)future?

- The tested RCM do not reproduce seasonal dynamics nor mean annual values of P
- T projections are convergent while P projections are largely uncertain
- No clear trend in runoff could be put in evidence for all seasons due to the superposition of the uncertainty bounds between past and future hydrological simulations
- The lack of robustness of the hydrological model was a major source of variability among streamflow projections under future climate conditions

How could we consider however uncertain prophecies from Cassandra?

- Limit the analysis to a multimodel ensemble mean of future projections
- Adopt a model-free approach relying on a sensitivity analysis under basic climate scenarios leading progressively to warmer and drier conditions

Thank you for listening. Any questions?

For more details:

Ruelland, D., Hublart, P. & Tramblay, Y. (2015). Assessing uncertainties in climate change impacts on runoff in western Mediterranean basins. In: Hydrologic non-stationarity and extrapolating models to predict the future. IAHS Publ., 371, 75–81.

