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Stakes from an IPCC perspective

A greenhouse gaz emission issue
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Stakes from an IPCC perspective A e

Scenarios for a warming less than 2°C and Intended Nationally
Determined Contribution
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Stakes from an IPCC perspective

Greenhouse gaz emissions by economic sectors
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Stakes from an IPCC perspective

Transition required for the energy sector in 2050
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Figure 7.14. Share of low-carbon energy in total primary energy, electricity and liquid supply sectors
for the year 2050. Bars show the interquartile range and error bands the full range across the baseline
and mitigation scenarios for different CO-ed ppm concentration levels in 2100 (Section 6.3.2). Dashed
horizontal lines show the low-carbon share for the year 2010. Low-carbon energy includes nuclear,
renewables, and fossil fuels with CCS. Source: ARS Scenario Database. Scenarios assuming

technology restrictions are excluded.
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Stakes from an IPCC perspective

Recent evolutions in energy consumption by technology
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Stakes from a EU policy perspective

The problem

“The challenges of transforming Europe’s energy system remain urgent and daunting: the EU
currently imports approx. 55% of its energy — and might reach 70% in the next 20 to 30 years. In 2030
the EU will be importing 84% of its gas, 59% of its coal and 94% of its oil. In these circumstances, it is
obvious that the challenge to satisfy our energy needs is big.”

The European Renewable Energy Council, “RE-Thinking 2050: A 100% Renewable Energy Vision for the European
Union”

EU directive promoting the use of energy from renewable sources (2009)
 Reduce greenhouse gas emissions and comply with the Kyoto Protocol
 Promote energy security
 Promote technological development and innovation
» Create job opportunities and regional development, especially in rural and isolated areas

3 objectives
* Reduce GHGs 20% below 1990 levels
» Reduce emissions by 20% by improving energy efficiency, and
* Increase the share of energy derived from renewables to 20%
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EU-28 actual and approximated progress to interim and 2020 targets

RES shares in gross final consumption (%)
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Stakes from a EU policy perspective
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How can regional modeling help for energy applications?

* Intensity and frequency of extreme events (heat/cold waves, frost and snow

storm, windstorms)
 Energy demand variability
 Cooling water availability
» Power outage

"« Renewable energy resources and their variability N
 Water resources (if routing is accounted for in the regional climate model)
 Wind and solar resources
 Impact of renewable energy production on regional climate g‘
2
« Evolution in the context of global change %
=
* Prospective scenarii (e.g. energy mix,...)
* Production/consumption modelling from regional climate model
\_  Technology deployment (optimization model, economic model, ...) )
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Impact of renewable energy production on regional climate .
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Impact of renewable energy production on regional climate .
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Impact of renewable energy production on regional climate
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normalized power production
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Evolution in the context of global change
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Impact of climate change on wind power potential and production
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Evolution in the context of global change

Impact of climate change on wind solar potential and production
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Prospective scenarii

Methodology Climatic dataset
MED-CORDEX regional climate
simulations (with WRF)

Numerical integration :
« 20km resolution

. 1989-2012

« ERA-Interim B.C

Electrical dataset
GSE and GRE dataset

« Optimization » of solar and wind
production wrt electrical demand
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Prospective scenarii

Electrical demand
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Electrical Production
« PVenergy e Partitioning solar radiation into direct and diffuse components, projected onto a 25°
| —~ plan with a south orientation

Conversion of solar radiation takes into account of the air temperature, clearness index
and several load loss factors (Rahman et al, 2009).

« Wind energy
| =

Wind interpolation at hub height (100m)
Transfer function using the power curve to compute electrical production from
windspeed

« Conventional + hydro

| >

90t quantile of the annual electrical demand
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Prospective scenarii

Technology deployment optimization: mean-variance portfolio theory

Process of assessing risk (variance) against an expected (mean) yield = penetration rate (mean)
versus the spatial variance of the different types of renewable energy production (also called portfolios)
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A trade off problem which
minimizes critical situation
occurrence:

* power shortage

* grid saturation with renewables
(network instability, negative
prices)
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Prospective scenarii

Accounting for profitability
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Conclusions

« Regional climate model simulations of practical interest for energy production infrastructure
safety and for resilience analysis

« Regional climate model simulations of practical interest for renewable energy resource
assessment in a present and future climate using simple resource to production model

« Regional climate model simulations of practical interest for management strategy if including
additional component (technology deployment optimization, economic model, electricity
distribution in the grid, electricity market,...).
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Credit:Dave Yoder

Tocco da Casauria, in central Italy, produces more electricity than it uses, making money off the surplus.



